CLASS - IX
 MATHEMATICS

Co-ordinate Geometry : Distance Formula

1. Find out the value of y if the distance of the point $(-4, y)$ from origin is 5 units.

Ans. The distance between origin $\mathrm{O}(0,0) \&(-4, \mathrm{y})$ is $=\sqrt{(-4-0)^{2}+(y-0)^{2}}$ units $=\sqrt{16+y^{2}}$ units
\therefore By the questions, $\sqrt{16+y^{2}}=5$
or, $16+y^{2}=25$ (squaring both sides)
or, $y^{2}=25-16$
or, $y^{2}=9$
or, $\quad y= \pm 3$
Ans. \therefore The required values of y are ± 3
2. What type of the triangle will be made by joining the three points $(3,0),(-3,0),(0,3)$.

Ans. Let, A (3, 0), B(-3, 0), C(0, 3)
$\therefore A B=\sqrt{(-3-3)^{2}+(0-0)^{2}}$ units $=\sqrt{36}$ units $=6$ units
$A C=\sqrt{(0-3)^{2}+(3-0)^{2}}$ units $=\sqrt{9+9}$ units $=\sqrt{18}$ units $=\sqrt{3 \times 3 \times 2}$ units $=3 \sqrt{2}$ units $B C=\sqrt{(0+3)^{2}+(3-0)^{2}}$ units $=\sqrt{9+9}$ units $=\sqrt{18}$ units $=3 \sqrt{2}$ units
$\because \quad A C^{2}+B C^{2}=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}$
or, $A C^{2}+B C^{2}=18+18=36=(6)^{2}$
or, $A C^{2}+B C^{2}=A B^{2}$
\therefore By converse theorem of Pythagoras $\triangle \mathrm{ABC}$ is right-angled triangle in which $\mathrm{AC}=\mathrm{BC}$
Ans. \therefore The triangle formed by the given three points is an isosceles right-angled triangle.
3. Show that the points $(2,5),(5,9),(9,12)$ and $(6,8)$ form a rhombus when they are joined orderly.

Ans. Let, A (2, 5), B (5, 9), C (9, 12), D (6, 8)
$\therefore A B=\sqrt{(5-2)^{2}+(9-5)^{2}}$ units $=\sqrt{9+16}$ units $=\sqrt{25}$ units $=5$ units
$B C=\sqrt{(9-5)^{2}+(12-9)^{2}}$ units $=\sqrt{16+9}$ units $=\sqrt{25}$ units $=5$ units $C D=\sqrt{(6-9)^{2}+(8-12)^{2}}$ units $=\sqrt{9+16}$ units $=\sqrt{25}$ units $=5$ units $D A=\sqrt{(2-6)^{2}+(5-8)^{2}}$ units $=\sqrt{16+9}$ units $=\sqrt{25}$ units $=5$ units
$\because \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Ans. \therefore The quadrilateral formed by the given four points is a rhombus.
4. Check whether the three points $O(0,0), A(4,3)$ and $B(8,6)$ are collinear and give reason. Ans.
$\because O A=\sqrt{(4-0)^{2}+(3-0)^{2}}$ units $=\sqrt{16+9}$ units $=5$ units
$A B=\sqrt{(8-4)^{2}+(6-3)^{2}}$ units $=\sqrt{16+9}$ units $=5$ units
$O B=\sqrt{(8-0)^{2}+(6-0)^{2}}$ units $=\sqrt{64+36}$ units $=10$ units
$\because \mathrm{OA}+\mathrm{AB}=5+5=10=\mathrm{OB}$
\therefore The given three points $\mathrm{O}, \mathrm{A}, \mathrm{B}$ are collinear.

